If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m+m^2=-4
We move all terms to the left:
7m+m^2-(-4)=0
We add all the numbers together, and all the variables
m^2+7m+4=0
a = 1; b = 7; c = +4;
Δ = b2-4ac
Δ = 72-4·1·4
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{33}}{2*1}=\frac{-7-\sqrt{33}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{33}}{2*1}=\frac{-7+\sqrt{33}}{2} $
| 6x-2=x^2 | | 6x+3=7x-9 | | (x-3)=6x-)4-x) | | x/5=9/9 | | 4t−10=2t+2 | | 130+4x+6=180 | | 8s+10=2s+34 | | 8(4x+3)=24 | | -5/2(1-w)=15 | | Y-1=1/8x+-1/4 | | 6g−2=40 | | 24y=30 | | 5f+7=42 | | 5f+7=39 | | (2x-10)+(4x-20)=12 | | (2x-10)+(4x-20)=0 | | 4e+7=39 | | 3(8x-1)=6(4x+7) | | x+(x+15)+3x=405 | | (2x-10+(4x-20)=12 | | 8c-4=76 | | -c/5-4=-3 | | 5c/6-2c/3=1/3 | | 56.5=7k-10 | | (X-5)+(x+5)+(2x-10)+(2x-10)=12 | | x+115=150 | | 3/4-1z/3=1/4 | | 2k/3+1k/4=22 | | 28v=-42 | | |2r+2|=18 | | -10x-35=-15x+8 | | 0=600-140x+6x^2 |